Thursday 6 September 2012

Harvard Architecture


The Harvard architecture is a computer architecture with physically separate storage and signal pathways for instructions and data.

Contrast with other computer architectures

In a computer with the contrasting von Neumann architecture (and no cache), the CPU can be either reading an instruction or reading/writing data from/to the memory. Both cannot occur at the same time since the instructions and data use the same bus system. In a computer using the Harvard architecture, the CPU can both read an instruction and perform a data memory access at the same time, even without a cache. A Harvard architecture computer can thus be faster for a given circuit complexity because instruction fetches and data access do not contend for a single memory pathway.
The Modified Harvard architecture is very much like the Harvard architecture but provides a pathway between the instruction memory and the CPU that allows words from the instruction memory to be treated as read-only data. This allows constant data, particularly text strings, to be accessed without first having to be copied into data memory, thus preserving more data memory for read/write variables. Special machine language instructions are provided to read data from the instruction memory.

Internal vs. external design

Modern high performance CPU chip designs incorporate aspects of both Harvard and von Neumann architecture. On-chip cache memory is divided into an instruction cache and a data cache. Harvard architecture is used as the CPU accesses the cache. In the case of a cache miss, however, the data is retrieved from the main memory, which is not divided into separate instruction and data sections. Thus, while a von Neumann architecture is presented to the programmer, the hardware implementation gains the efficiencies of the Harvard architecture.


                                                                                                     .........................to be continued                     R.P

1 comment: